Meta-Structure Hull Design with Periodic Layered Phononic Crystals Theory for Wide-Band Low-Frequency Sound Insolation

Author:

Zhang Fuxi1,Sun Xinyi1,Tao Wei1,Wang Shiming1,Flowers George T.2,Hu Qingsong1,Gaidai Oleg1ORCID

Affiliation:

1. College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, China

2. Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA

Abstract

The hulls of marine vehicles are generally very effective at attenuating airborne acoustic noise generated by their powertrains. However, conventional hull designs are generally not very effective at attenuating wide-band low-frequency noise. Meta-structure concepts offer an opportunity for the design of laminated hull structures tailored to address this concern. This research proposes a novel meta-structure laminar hull concept using periodic layered Phononic crystals to optimize the sound insolation performance on the air–solid side of the hull structure. The acoustic transmission performance is evaluated using the transfer matrix, the acoustic transmittance, and the tunneling frequencies. The theoretical and numerical models for a proposed thin solid-air sandwiched meta-structure hull indicate ultra-low transmission within a 50-to-800 Hz frequency band and with two predicted sharp tunneling peaks. The corresponding 3D-printed sample experimentally validates the tunneling peaks at 189 Hz and 538 Hz, with 0.38 and 0.56 transmission magnitudes, respectively, with the frequency band between those values showing wide-band mitigation. The simplicity of this meta-structure design provides a convenient way to achieve acoustic band filtering of low frequencies for marine engineering equipment and, accordingly, an effective technique for low-frequency acoustic mitigation.

Funder

Key Laboratory of Marine Ecological Conservation and Restoration-Ministry of Natural Resources

National Natural Science Foundation of China

Shanghai Ocean University

Shanghai Engineering Research Center of Marine Renewable Energy

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3