Annual Plants and Thermoplastics in the Production of Polymer and Lignocellulose Boards

Author:

Banaszak Aleksandra1,Woźniak Magdalena2ORCID,Dziurka Dorota1ORCID,Mirski Radosław1

Affiliation:

1. Department of Mechanical Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 28, 60-627 Poznań, Poland

2. Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland

Abstract

This study investigated the mechanical, physical, and thermal properties of three-layer particleboards produced from annual plant straws and three polymers: polypropylene (PP), high-density polyethylene (HDPE), and polylactic acid (PLA). The rape straw (Brassica napus L. var. Napus) was used as an internal layer, while rye (Secale L.) or triticale (Triticosecale Witt.) was applied as an external layer in the obtained particleboards. The boards were tested for their density, thickness swelling, static bending strength, modulus of elasticity, and thermal degradation characteristics. Moreover, the changes in the structure of composites were determined by infrared spectroscopy. Among the straw-based boards with the addition of tested polymers, satisfactory properties were obtained mainly using HDPE. In turn, the straw-based composites with PP were characterized by moderate properties, while PLA-containing boards did not show clearly favorable properties either in terms of the mechanical or physical features. The properties of straw–polymer boards produced based on triticale straw were slightly better than those of the rye-based boards, probably due to the geometry of the strands, which was more favorable for triticale straw. The obtained results indicated that annual plant fibers, mainly triticale, can be used as wood substitutes for the production of biocomposites. Moreover, the addition of polymers allows for the use of the obtained boards in conditions of increased humidity.

Funder

Faculty of Forestry and Wood Technology, Poznań University of Life Sciences

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3