Water-Related Properties of Wood after Thermal Modification in Closed Process under Pressure in Nitrogen

Author:

Sosins Guntis1,Grinins Juris1ORCID,Brazdausks Prans1,Zicans Janis2

Affiliation:

1. Latvian State Institute of Wood Chemistry, 27 Dzerbenes Street, LV-1006 Riga, Latvia

2. Institute of Polymer Materials, Faculty of Materials Science and Applied Chemistry, Riga Technical University, 3/7 Paula Valdena Street, LV-1048 Riga, Latvia

Abstract

Silver birch (Betula pendula) and Scots pine (Pinus sylvestris) wood boards (1000 × 100 × 25 mm) were thermally modified in a 340 L pilot-scale device in nitrogen with a special focus on increasing dimensional stability and reducing hydrophilicity. The research expands our understanding of the TM process in a closed system under pressure of nitrogen and its impact on the water absorption capabilities of wood. Several thermal modification (TM) parameters were tested, including temperature (160–180 °C), maximum temperature duration (30–180 min), and TM chamber initial pressure (3–6 bar). TM wood dimensional changes, mass loss (ML), equilibrium moisture content (EMC), and anti-swelling efficiency (ASE) were determined to characterize the TM process intensity and evaluate the hydrophilicity. Birch wood exhibited a higher ML (5.9%–12%) than pine wood (2.6%–9%) after TM. TM caused a shrinkage in the tangential, radial, and total volume of both wood species. The TM birch wood ASE values varied from 22% to 69%, while the pine wood ASE was 27% to 58%. The cell wall total water capacity (CWTWC) of TM wood was greatly reduced. The EMC and volumetric swelling (VS) of TM birch and pine wood were 29% to 67% lower, respectively, at all relative humidities (65, 75, and 95%).

Funder

Latvian State Institute of Wood Chemistry Bio-economy

Publisher

MDPI AG

Subject

Forestry

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3