Introducing Adaptive Machine Learning Technique for Solving Short-Term Hydrothermal Scheduling with Prohibited Discharge Zones

Author:

Akram SaqibORCID,Fakhar Muhammad SalmanORCID,Kashif Syed Abdul RahmanORCID,Abbas GhulamORCID,Ullah NasimORCID,Mohammad Alsharef,Farrag Mohamed EmadORCID

Abstract

The short-term hydrothermal scheduling (STHTS) problem has paramount importance in an interconnected power system. Owing to an operational research problem, it has been a basic concern of power companies to minimize fuel costs. To solve STHTS, a cascaded topology of four hydel generators with one equivalent thermal generator is considered. The problem is complex and non-linear and has equality and inequality constraints, including water discharge rate constraint, power generation constraint of hydel and thermal power generators, power balance constraint, reservoir storage constraint, initial and end volume constraint of water reservoirs, and hydraulic continuity constraint. The time delays in the transport of water from one reservoir to the other are also considered. A supervised machine learning (ML) model is developed that takes the solution of the STHTS problem without PDZ, by any metaheuristic technique, as input and outputs an optimized solution to STHTS with PDZ and valve point loading (VPL) effect. The results are quite promising and better compared to the literature. The versatility and effectiveness of the proposed approach are tested by applying it to the previous works and comparing the cost of power generation given by this model with those in the literature. A comparison of results and the monetary savings that could be achieved by using this approach instead of using only metaheuristic algorithms for PDZ and VPL are also given. The slipups in the VPL case in the literature are also addressed.

Funder

Taif University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference34 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3