Field Measurement and Mechanism Analysis of Rail Corrugation on Steel Spring Floating Slab Track Section

Author:

Ma KuikuiORCID

Abstract

In this study, a combination method of field measurements and numerical simulations is used to investigate the mechanism of rail corrugation in the curve’s inner rail in urban rail transit. Firstly, field measurements on rail corrugation and rail vibration characteristics were conducted on the steel spring floating slab track (SSFST) section of a metro line; secondly, a three-dimensional finite element model of the wheelset-SSFST was established, and complex eigenvalue analysis and transient analysis were conducted. It was found that the main frequency of measured rail vertical vibration and the simulated wheel–rail—which simulated normal contact force on the inner rail—correspond to the first wheel–rail unstable vibration mode, as well as to the field-measured rail corrugation passing frequency. Therefore, the strong agreement between the results of the field measurements and the numerical simulation further verifies that the frictional, self-excited vibration of the wheelset-SSFST system on a sharply curved track can cause rail corrugation. When the vertical and lateral fasteners’ stiffness increases, the possibility of rail corrugation decreases. The decrease in vertical stiffness of the steel spring leads to an increase in the possibility of rail corrugation, but the lateral stiffness changes in the steel spring have almost no effect on the possibility of rail corrugation. The increase in the wheel–rail contact friction coefficient leads to a sharp increase in the trend of rail corrugation occurrence and causes a decrease in the rail corrugation wave-length.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3