Implementation of Magnetic Nanostructured Adsorbents for Heavy Metals Separation from Textile Wastewater

Author:

Barozzi Marco,Copelli Sabrina,Russo Eleonora,Sgarbossa PaoloORCID,Lavagnolo Maria CristinaORCID,Sandon AnnalisaORCID,Morosini CristianaORCID,Sieni ElisabettaORCID

Abstract

In the framework of sustainability, water shortages and water pollution are two important aspects to be considered. Proposing efficient and low-impact technologies is of paramount importance to promote circular economies associated with the use of water in the industrial context, especially in the textile industry. In this work, the application of a set of magnetic nanostructured adsorbents (MNAs) to cleanse metal ions from textile wastewaters was studied and analyzed. MNAs were generated with a low-cost process, involving iron (II/III) salts (e.g., chlorides), sodium or ammonium hydroxide solutions, and graphene oxide, obtained from graphite by a modified Hummers’ method at room temperature. The shape and the size were studied with transmission electron microscopy. Adsorbents were tested with different metal ions (e.g., copper, chromium (III), and nickel). Metal ion concentrations were analyzed by means of inductively coupled plasma optical emission spectroscopy (ICP-OES), and adsorption isotherms were characterized. From the results, the MNAs exhibited the capability of removing metal ions up to a yield of 99% for Cr3+, 94.7% for Cu2+, and 91.4% for Ni2+, along with adsorption loads up to 4.56 mg/g of MNAs.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference43 articles.

1. WHO/UNICEF Progress on Sanitation and Drinking-Water—Update 2013https://apps.who.int/iris/handle/10665/81245

2. IPCC AR5 Climate Change 2014: Impacts, Adaptation, and Vulnerabilityhttps://www.ipcc.ch/report/ar5/wg2/

3. Composites for wastewater purification: A review

4. Sustainability of dairy and soy processing: A review on wastewater recycling

5. In situ textile wastewater treatment in high rate transpiration system furrows planted with aquatic macrophytes and floating phytobeds

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3