Abstract
In this paper, a rotation-invariant local binary pattern operator equipped with a local contrast measure (riLBPc) is employed to characterize the type of mineral twinning by inspecting the texture properties of crystals. The proposed method uses photomicrographs of minerals and produces LBP histograms, which might be compared with those included in a predefined database using the Kullback–Leibler divergence-based metric. The paper proposes a new LBP-based scheme for concurrent classification and recognition tasks, followed by a novel online updating routine to enhance the locally developed mineral LBP database. The discriminatory power of the proposed Classification and Recognition Updating System (CARUS) for texture identification scheme is verified for plagioclase, orthoclase, microcline, and quartz minerals with sensitivity (TPR) near 99.9%, 87%, 99.9%, and 96%, and accuracy (ACC) equal to about 99%, 97%, 99%, and 99%, respectively. According to the results, the introduced CARUS system is a promising approach that can be applied in a variety of different fields dealing with classification and feature recognition tasks.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献