Co-Implementation of Tillage, Precision Nitrogen, and Water Management Enhances Water Productivity, Economic Returns, and Energy-Use Efficiency of Direct-Seeded Rice

Author:

Pratap Vijay,Dass AnchalORCID,Dhar ShivaORCID,Babu SubhashORCID,Singh Vinod Kumar,Singh Raj,Krishnan Prameela,Sudhishri Susama,Bhatia Arti,Kumar Sarvendra,Choudhary Anil Kumar,Singh Renu,Kumar Pramod,Sarkar Susheel Kumar,Verma Sunil Kumar,Kumari Kavita,San Aye Aye

Abstract

The sustainability of conventional rice (Oryza sativa L.) production systems is often questioned due to the over-mining of groundwater and environmental degradation. This has led to the development of cost-effective, resource-efficient, and environmentally clean rice production systems by optimizing water and nitrogen (N) use. Hence, a 2-year field study (2019 and 2020) was conducted at the ICAR–Indian Agricultural Research Institute, New Delhi, to assess the effect of precision N and water management strategies on growth, land, and water productivity, as well as energy-use efficiency in scented direct-seeded rice (DSR). Two crop establishment methods, conventional-till DSR (CT-DSR) and zero-till DSR (ZT-DSR) along with three irrigation scenarios (assured irrigation (irrigation after 72 h of the drying of surface water), irrigation at 20% depletion of available soil moisture (DASM), and 40% DASM+Si (80 kg ha−1)) were assigned to the main plots; three N management options, a 100% recommended dose of N (RDN): 150 kg ha−1; Nutrient Expert® (NE®)+leaf color chart (LCC) and NE®+soil plant analysis development (SPAD) meter-based N management were allocated to sub-plots in a three-time replicated split-plot design. The CT-DSR produced 1.4, 11.8, and 89.4, and 2.4, 18.8, and 152.8% more grain yields, net returns, and net energy in 2019 and 2020, respectively, over ZT-DSR. However, ZT-DSR recorded 8.3 and 10.7% higher water productivity (WP) than CT-DSR. Assured irrigation resulted in 10.6, 16.1 16.9, and 8.1 and 12.3, 21.8 20.6, and 6.7% higher grain yields, net returns, net energy, and WP in 2019 and 2020, respectively, over irrigation at 20% DASM. Further, NE®+SPAD meter-based N management saved 27.1% N and recorded 9.6, 18.3, 16.8, and 8.3, and 8.8, 21.7, 19.9, and 10.7% greater grain yields, net returns, net energy, and WP over RDN in 2019 and 2020, respectively. Thus, the study suggested that the NE®+SPAD-based N application is beneficial over RDN for productivity, resource-use efficiency, and N-saving (~32 kg ha−1) both in CA-based and conventionally cultivated DSR. This study also suggests irrigating DSR after 72 h of the drying of surface water; however, under obviously limited water supplies, irrigation can be delayed until 20% DASM, thus saving two irrigations, which can be diverted to additional DSR areas.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3