Microscopic Damage to Limestone under Acidic Conditions: Phenomena and Mechanisms

Author:

Chen Xingming,Liu Xiaoping,Luo Haoming,Long Linjian,Liu Chuanju

Abstract

In an acidic environment, the mineral components in rock begin to break down. As a result, the microstructure will be damaged, and then the mechanical properties will deteriorate, which will eventually have a negative effect on engineering stability. In order to study acid damage’s effect on this kind of rock, limestone samples were acidified for 0 days, 5 days, 10 days, 15 days, and 20 days. The microstructure changes in the limestone after acidification were studied via the wave velocity test and electron microscope scanning, and the damage deterioration mechanism was revealed. The results show that the acoustic signal of acidified samples has an obvious absorption effect at high frequency, and the surface pore structure of acidified samples shows fractal characteristics. The P-wave velocity, main peak amplitude, and fractal dimension of the acidified samples did not gradually decrease with time; however, there was a short-term strengthening phenomenon during immersion, which was mainly caused by the formation of CaSO4 crystals.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3