Experimental Study on Microbial-Induced Calcium Carbonate Precipitation Repairing Fractured Rock under Different Temperatures

Author:

Deng Junren,Deng Hongwei,Zhang Yanan,Luo Yilin

Abstract

Microbial-induced calcium carbonate precipitation (MICP) technology mainly uses carbonates produced by the reaction of microbial activities to repair rocks and soils. Temperature influences microbial metabolism and the kinetics of chemical reactions. In this study, microbial repair experiments on fractured sandstone under different temperatures are carried out. The repair effects are tested with nuclear magnetic resonance (NMR), an X-ray automatic diffractometer (XRD), uniaxial compressive strength (UCS), and a scanning electron microscope (SEM) test. The influence of the temperature on the restorative effects of MICP was discussed. The results show that the repair effect of the Sporosarcina pasteurii is significantly better as the temperature increases. When the temperature reaches 33 °C, the porosity and permeability of fractured sandstone can be reduced by 55.174% and 98.761%, respectively. The average uniaxial compressive strength can be restored to 6.24 MPa. The repair effect gradually weakens with the increase in temperature. However, the Sporosarcina pasteurii can still maintain relatively good biological activity at temperatures from 33 °C to 39 °C. The main form of CaCO3 produced in the process of MICP is calcite. It can fill in the rock pores, and result in reducing the size and number of large pores and improving the impermeability and strength of fractured yellow sandstone.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3