Longitudinal Driving Behavior before, during, and after a Left-Turn Movement at Signalized Intersections: A Naturalistic Driving Study in China

Author:

Xia Lihong,Li Penghui,Su ZhizhuoORCID,Chen Tao,Deng Zhaoxiang,Sun Dihua

Abstract

A human-like driving model can help to improve the acceptance and safety of automated driving systems (ADS). To improve the performance of human-like driving and interaction with conventional vehicles of ADS, the speed behavior of left-turn vehicles at the signalized intersection was studied using natural driving data. In this study, 374 valid data points of left-turn snippets at signalized intersections were extracted and three phases were introduced based on the reaction behavior of braking, stopping, and accelerating in the left-turn process. Firstly, a one-way ANOVA was used to study the influence of traffic density, traffic light state, intersection type, and left-turn waiting area on the reaction position of each phase and the spatial distribution of the speed. The traffic light state and traffic density were the main significant effects. Furthermore, to analyze the spatial distribution of acceleration, a method of frequency contour was conducted. The butterfly-shaped frequency contour suggested that “the closer to the stop line, the higher the variation of acceleration”. Finally, the driving parameters at each phase were further analyzed. The main results indicate the following: (1) The red traffic light will lead to a larger variation of acceleration, a larger maximum deceleration, a larger starting acceleration, and a larger maximum acceleration. (2) On the condition of dense traffic density, more stops and the duration of the stop–go phase may cause the time pressure, and the driver tends to choose a greater maximum acceleration. (3) The red traffic light leads to a further reaction distance of all three phases, whilst increased traffic density only increases the reaction distance of the stop. (4) Both the dense traffic density and red traffic light lead to an earlier reaction time. The findings can provide a basis for the design of human-like driving of left-turn driving assistance systems and improve the interaction with left-turn conventional vehicles.

Funder

Natural Science Foundation of Chongqing

Open Foundation of State Key Laboratory of Vehicle NVH and Safety Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference47 articles.

1. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles (R), J3016-202104 https://www.sae.org/standards/content/J3016_202104

2. Target Population for Intersection Advanced Driver Assistance Systems in the U.S.

3. Evaluating the Potential of an Intersection Driver Assistance System to Prevent US Intersection Crashes;Scanlon;Ph.D. Dissertation,2017

4. Effects of the driving context on the usage of Automated Driver Assistance Systems (ADAS) -Naturalistic Driving Study for ADAS evaluation

5. Traffic Safety Facts 2015 Data (DOT HS 812 353, Updated March 2017);NHTSA,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3