Mechanical and Durability Properties of Self-Compacted Concrete Incorporating Waste Crumb Rubber as Sand Replacement: A Review

Author:

Zrar Yarivan J.,Younis Khaleel H.ORCID

Abstract

The lack of disposal facilities for waste tires from various vehicles is a major environmental and economic problem. Crumb rubber (CR) generated from waste tires can be used to partially replace fine natural aggregates in self-compacted concrete (SCC), lowering sand usage and protecting raw material resources. The main objective of this study is to summarize the influence of CR as a partial replacement for sand on the behavior of SCC. For this aim, 42 papers were selected out of 89 that were relevant to the objective of this study. The mechanical properties, i.e., compressive strength, flexural strength, splitting tensile strength, modulus of elasticity, and bond strength, as well as the ultrasonic pulse velocity (UPV), were all reduced by the insertion of CR into SCC mixtures. With the addition of CR, fracture energy decreases, but the ductility of concrete in terms of characteristic length can be enhanced. Meanwhile, replacing sand with CR can also reduce the durability performance of SCC, such as sorptivity, free-drying shrinkage, rapid chloride permeability, and depth of chloride penetration, except for the electrical resistivity, depth of carbonation, and impact resistance, which exhibit a positive tendency. Based on the results of the reviewed articles, predicted reductions in the strength of the SCC incorporating CR were also recommended. Moreover, the results of the reviewed studies were employed to develop empirical models that demonstrate the relations between various mechanical properties.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3