Predictive Analysis and Wine-Grapes Disease Risk Assessment Based on Atmospheric Parameters and Precision Agriculture Platform

Author:

Marcu IoanaORCID,Drăgulinescu Ana-MariaORCID,Oprea CristinaORCID,Suciu GeorgeORCID,Bălăceanu CristinaORCID

Abstract

In the precision viticulture domain, data recorded by monitoring devices are large-scale processed to improve solutions for grapes’ quality and global production and to offer various recommendations to achieve these goals. Soil-related parameters (soil moisture, structure, etc.) and atmospheric parameters (precipitation, cumulative amount of heat) may facilitate crop diseases occurrence; thus, following predictive analysis, their estimation in vineyards can offer an early-stage warning for farmers and, therefore, suggestions for their prevention and treatment are of particular importance. Using remote sensing devices (e.g., satellites, unmanned vehicles) and proximal sensing methods (e.g., wireless sensor networks (WSNs)), we developed an efficient precision agriculture telemetry platform to provide reliable assessments of atmospheric phenomena periodicity and crop diseases estimation in a vineyard near Bucharest, Romania. The novelty of the materials and methods of this work relies on providing comprehensive preliminary references about monitored parameters to enable efficient, sustainable agriculture. Comparative analyses for two consecutive years illustrate an excellent correlation between cumulative and daily heat, precipitation quantity, and daily evapotranspiration (ET). In addition, the platform proved viable for wine-grapes disease estimation (powdery mildew, grape bunch rot, and grape downy mildew) and treatment recommendations based on the elaborated phenological calendar. Our results, together with continuous monitoring for the upcoming years, may be used as a reference to perform productive, sustainable smart agriculture in terms of yield and crop quality in Romania. In the Conclusion section, we show that farmers and personnel from cooperatives can use this information to make assessments based on the correlation of the available data to avoid critical damage to the wine-grape.

Funder

Unitatea Executiva Pentru Finantarea Invatamantului Superior a Cercetarii Dezvoltarii si Inovarii

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference62 articles.

1. https://crops.extension.iastate.edu/encyclopedia/using-precision-agriculture-improve-soil-fertility-management-and-farm-research

2. Evaluation of Soil Management Effect on Crop Productivity and Vegetation Indices Accuracy in Mediterranean Cereal-Based Cropping Systems

3. Soil research challenges in response to emerging agricultural soil management practices

4. Analysis of Soil and Crop Properties for Precision Agriculture for Winter Wheat

5. Tropical Rusthttps://plantix.net/en/library/plant-diseases/100101/tropical-rust

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3