Can Fujian Achieve Carbon Peak and Pollutant Reduction Targets before 2030? Case Study of 3E System in Southeastern China Based on System Dynamics

Author:

Zhao Lei,Pan Wenbin,Lin Hao

Abstract

Fujian Province has entered the golden period of industrialization and rapid economic development, and its economy and society are undergoing significant changes. An unreasonable industrial structure and rapid growth of energy consumption will result in a high pressure of carbon peak and environmental pollution in Fujian Province in 2030. How to improve energy efficiency, control environmental pollution, and achieve a carbon peak by 2030 while ensuring economic growth has become the focus of the attention of researchers and relevant policymakers. A disadvantage of the current 3E (Economy–Energy–Environment) system is that it has no quantitative basis for the selection of variables and no combined analysis of carbon emissions and environmental pollution, which is not conducive to paying attention to environmental pollution in the process of achieving carbon peak. Based on the STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and Technology) model analysis results of environmental pollution and carbon emissions in Fujian Province, this paper established the 3E system model of Fujian Province to simulate three development scenarios and explored the EKC (Environmental Kuznets Curve). The results of the STIRPAT model showed that population, economic structure, and energy structure were the main influencing factors of environmental pollution and carbon emissions in Fujian Province. The 3E system simulation results showed that the current development scenario (scenario one) in Fujian Province is not sustainable, and the carbon peak and pollutant reduction cannot be achieved in 2030. A more stringent development scenario (scenario three) was required to achieve carbon peak and pollutant reduction on schedule. The trend of the carbon emission EKC curve in Fujian Province was different from that of environmental pollution. The carbon emission EKC curve of Fujian Province was a common inverted “U” shape, while the environmental pollution EKC curve had three shapes of “N”, “M,” and inverted “U”. This study can provide a quantitative method for selecting 3E system variables and a new method for establishing the 3E model, and provide a quantitative reference for Fujian Province to develop subsequent policies to control carbon emissions and environmental pollution.

Funder

"Project of Fujian Provincial" Departmentof Science and Technology, China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference45 articles.

1. Using system dynamics to analyse key factors influencing China's energy-related CO2 emissions and emission reduction scenarios

2. Taking stock of national climate policies to evaluate implementation of the Paris Agreement

3. Research on the Sustainable Development of an Economic-Energy-Environment (3E) System Based on System Dynamics (SD): A Case Study of the Beijing-Tianjin-Hebei Region in China

4. IPCC AR6 Synthesis Report: Climate Change 2022 https://www.ipcc.ch/report/sixth-assessment-report-cycle/

5. GOFJP Issued by Fujian Provincial People’s Government Fujian Province National Economic and Social Development of the Fourteenth Five-Year Plan and Notice on the Outline of the Vision for 2035

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3