Impact of Data Loss on Multi-Step Forecast of Traffic Flow in Urban Roads Using K-Nearest Neighbors

Author:

Mallek AminORCID,Klosa Daniel,Büskens Christof

Abstract

Data-driven models have recently proved to be a very powerful tool to extract relevant information from different kinds of datasets. However, datasets are often subject to multiple anomalies, including the loss of important parts of entries. In the context of intelligent transportation, we examine in this paper the impact of data loss on the behavior of one of the frequently used approaches to address this kind of problems in the literature, namely, the k-nearest neighbors model. The method designed herein is set to perform multi-step traffic flow forecasts in urban roads. In our study, we deploy non-prepossessed real data recorded by seven inductive loop detectors and delivered by the Traffic Management Center (VMZ) of Bremen (Germany). Firstly, we measure the performance of the model on a complete dataset of 11 weeks. The same dataset is then used to artificially create 50 incomplete datasets with different gap sizes and completeness levels. Afterwards, in order to reconstruct these datasets, we propose three computationally-low techniques, which proved through empirical testing to be efficient in reproducing missing entries. Thereafter, the performance of the E-KNN model is assessed under the original dataset, incomplete and filled-in datasets. Although the accuracy of E-KNN under incomplete and reconstructed datasets depends on gap lengths and completeness levels, under original dataset, the model proves to deliver six-step forecasts with an accuracy of 83% on average over 3 weeks of the test set, which also translates to a less than one car per minute error.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3