Author:
Yang Yunjie,Bai Minli,Su Laisuo,Lv Jizu,Hu Chengzhi,Gao Linsong,Li Yang,Li Yubai,Song Yongchen
Abstract
The service life of catalysts is a key aspect limiting the commercial development of proton exchange membrane fuel cells (PEMFCs). In this paper, a one-dimensional degradation model of a Pt-Co alloy catalyst in the cathode catalytic layer (CCL) of a PEMFC is proposed, which can track the catalyst size evolution in real time and demonstrate the catalyst degradation during operation. The results show that severe dissolution of particles near the CCL/membrane leads to uneven aging of the Pt-Co alloy catalyst along the CCL thickness direction. When the upper potential limit (UPL) is less than 0.95 V, it does not affect the catalyst significantly; however, a slight change may cause great harm to the catalyst performance and service life after UPL > 0.95 V. In addition, it is found that operating temperature increases the Pt mass loss on the carbon support near the CCL/membrane side, while it has little effect on the remaining Pt mass on the carbon support near the CCL/GDL side. These uncovered degradation mechanisms of Pt-Co alloy provide guidance for its application in PEMFCs.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities, China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献