Predicting Monthly Runoff of the Upper Yangtze River Based on Multiple Machine Learning Models

Author:

Li XiaoORCID,Zhang Liping,Zeng SidongORCID,Tang Zhenyu,Liu Lina,Zhang QinORCID,Tang Zhengyang,Hua Xiaojun

Abstract

Accurate monthly runoff prediction is significant to extreme flood control and water resources management. However, traditional statistical models without multi-variable input may fail to capture runoff changes effectively due to the dual effect of climate change and human activities. Here, we used five multi-input machine learning (ML) models to predict monthly runoff, where multiple global circulation indexes and surface meteorological indexes were selected as explanatory variables by the stepwise regression or copula entropy methods. Moreover, four univariate models were adopted as benchmarks. The multi-input ML models were tested at two typical hydrological stations (i.e., Gaochang and Cuntan) in the Upper Yangtze River. The results indicate that the LSTM_Copula (long short-term memory model combined with copula entropy method) model outperformed other models in both hydrological stations, while the GRU_Step (gate recurrent unit model combined with stepwise regression method) model and the RF_Copula (random forest model combined with copula entropy method) model also showed satisfactory performances. In addition, the ML models with multi-variable input provided better predictability compared with four univariate statistical models, and the MAPE (mean absolute percentage error), RMSE (root mean square error), NSE (Nash–Sutcliffe efficiency coefficient), and R (Pearson’s correlation coefficient) values were improved by 5.10, 4.16, 5.34, and 0.43% for the Gaochang Station, and 10.84, 17.28, 13.68, and 3.55% for the Cuntan Station, suggesting the proposed ML approaches are practically applicable to monthly runoff forecasting in large rivers.

Funder

Hubei Key Laboratory of Intelligent Yangtze and Hydroelectric Science Foundation

National Key Research and Development Program of China

Youth Innovation Promotion Association

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3