Application of Graphene-Based Nanomaterials as a Reinforcement to Concrete Pavements

Author:

Jayasooriya Darshana,Rajeev PathmanathanORCID,Sanjayan JayORCID

Abstract

Nanomaterials are considered to be one of the game-changing features in the modern world and nanotechnology is mostly reputed as the next-generation industrial revolution due to the extraordinary characteristics possessed by them at their very small scale. Graphene and graphene oxide are two main nanoscale materials that have seen a drastic increase in their use in cement-based composites due to exemptional enhancements in terms of strength and durability that can be imparted to compromise the inherent flaws of concrete and other cementitious composites. The main aim of this study was to investigate the effect of graphene and graphene oxide on improving the performance of cement-based composites and, particularly, of continuously reinforced concrete pavements (CRCP), which is one of the emerging trends in the transport sector due to various advantages they bring in over conventional flexible pavements and unreinforced concrete pavements. Fresh, hardened and durability properties of concrete with graphene-based nanomaterials were studied and the past experimental data were used to predict statistical interferences between different parameters attributed to concrete. According to the review, graphene-based nanomaterials seem to be promising to overcome the various CRCP distresses. Simultaneously, the possibilities and hinderances of using graphene and graphene oxide in cement-based composites as a reinforcement are discussed. Finally, the potential of using graphene in continuously reinforced concrete pavements is explored.

Funder

Australian Research Council

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference108 articles.

1. Fiber in Continuously Reinforced Concrete Pavements. Texas Department of Transportation, Technical Report, Center for Transportation Research, The University of Texas at Austin https://ctr.utexas.edu/wp-content/uploads/pubs/0_4392_2.pdf

2. Continuously Reinforced Concrete Pavement Manual, Guidelines for Design, Construction, Maintenance, and Rehabilitation,2016

3. Design Aspects on Steel Fiber-Reinforced Concrete Pavements

4. Steel fiber concrete slabs on ground: A structural matter;Sorelli;ACI Mater. J.,2006

5. Enhancement of Rigid Pavement Capacity Using Synthetic Discrete Fibers

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3