Daily Groundwater Level Prediction and Uncertainty Using LSTM Coupled with PMI and Bootstrap Incorporating Teleconnection Patterns Information

Author:

Chu Haibo,Bian Jianmin,Lang Qi,Sun Xiaoqing,Wang ZhuoqiORCID

Abstract

Daily groundwater level is an indicator of groundwater resources. Accurate and reliable groundwater level (GWL) prediction is crucial for groundwater resources management and land subsidence risk assessment. In this study, a representative deep learning model, long short-term memory (LSTM), is adopted to predict groundwater level with the selected predictors by partial mutual information (PMI), and bootstrap is employed to generate different samples combination for training many LSTM models, and the predicted values by many LSTM models are used for the uncertainty assessment of groundwater level prediction. Two wells of different climate zones in the USA were used as a case study. Different significant predictors of GWL for two wells were identified by PMI from candidate predictors incorporating teleconnection patterns information. The results show that GWL is significantly affected by antecedent GWL, AO, Niño 3.4, Niño 1 + 2, and precipitation in humid areas, and by antecedent GWL, AO, Niño 3.4, Niño 3, Niño 1 + 2, and PNA in arid areas. Predictor selection can assist in improving the prediction performance of the LSTM model. The relationship between GWL and significant predictors were modeled by the LSTM model, and it achieved higher accuracy in humid areas, while the performance in arid areas was poorer due to limited precipitation information. The performance of LSTM was improved by increasing correlation coefficient (R2) values by 10% and 25% for 2 wells compared to generalized regression neural network (GRNN). Three uncertainty evaluation metrics indicate that LSTM reduced the uncertainty compared to GRNN model. LSTM coupling with PMI and bootstrap can be a promising approach for accurate and reliable groundwater level prediction for different climate zones.

Funder

Major Science and Technology Projects of Qinghai Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3