Assessment of Mechanical, Thermal and Durability Properties of High-Volume GGBS Blended Concrete Exposed to Cryogenic Conditions

Author:

Lee GiyeolORCID,Na Okpin

Abstract

The purpose of this study is to suggest the optimum mix design with a high volume of GGBS (Ground Granulated Blast-furnace Slag) replacement and the procedure of the cryogenic test to consider mechanical and thermal properties, and durability performance. To decide the optimum mix design, four mix designs with high-volume of GGBS replacement were suggested, in terms of the slump and retention time. Based on the test results, with respect to the workability and compressive strength, the mixtures with 65% of GGBS (C40-2 and C40-4) were better than the mixtures with 50% and 60% of GGBS (C40-1 and C40-3). After selecting two mixtures, two types of cryogenic test methods were conducted under one-cycle cryogenic condition (Test A) and 50-cycles cryogenic condition (Test B). As a result, in Test A, the compressive strength and elastic modulus of the C40-2 and C40-4 mixtures tended to be decreased over time, because of the volume expansion of ice crystals contained in the capillary pores. In Test B, the mechanical properties of the C40-4 mixture were better than those of the C40-2 mixture, in terms of the reduction rate of compressive strength and elastic modulus. In the view of the heat of hydration, the semi-adiabatic test was conducted. In the results, the C40-4 mixture was better to control the thermal cracks. Thus, the C40-4 mixture would be more suitable for cryogenic concrete and this procedure could be helpful to decide the mixture of cryogenic concrete. In the future, the long-term performance of cryogenic concrete needs to be investigated.

Publisher

MDPI AG

Subject

General Materials Science

Reference59 articles.

1. Energy Outlook;Fourlis,2021

2. Cryogenic Above Ground Storage Tanks: Full Containment and Membrane Comparison of Technologies https://www.gti.energy/wp-content/uploads/2018/12/Storage-2-Jerome_Thiercault-LNG17-Poster.pdf

3. Property and Applied Technology of Concrete at Very Low Temperature;Han;Mag. KCI,2005

4. THE INFLUENCE OF STORAGE AT VERY LOW TEMPERATURES ON THE DETERIORATION OF CONCRETE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3