Abstract
This investigation focuses on the development and optimization of cashew gum polysaccharide (CGP) nanoparticles grafted with polypropylene glycol (PPG) as carriers for diclofenac sodium. The optimization of parameters affecting nanoparticles formulation was performed using a central composite rotatable design (CCRD). It was demonstrated that the best formulation was achieved when 10 mg of CGP was mixed with 10 μL of PPG and homogenized at 22,000 rpm for 15 min. The physicochemical characterization evidenced that diclofenac was efficiently entrapped, as increases in the thermal stability of the drug were observed. The CGP-PPG@diclofenac nanoparticles showed a globular shape, with smooth surfaces, a hydrodynamic diameter around 275 nm, a polydispersity index (PDI) of 0.342, and a zeta potential of −5.98 mV. The kinetic studies evidenced that diclofenac release followed an anomalous transport mechanism, with a sustained release up to 68 h. These results indicated that CGP-PPG nanoparticles are an effective material for the loading/release of drugs with similar structures to diclofenac sodium.
Funder
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Fundação de Amparo à Pesquisa do Estado de Goiás
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Fundação de Amparo à Pesquisa do Estado de São Paulo
Subject
General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献