Contrasting Impacts of ENSO on the Interannual Variations of Summer Runoff between the Upper and Mid-Lower Reaches of the Yangtze River

Author:

Ye Xiaochen,Wu Zhiwei

Abstract

The Yangtze River Basin is an El Niño–Southern Oscillation (ENSO)-sensitive region, prone to floods and droughts. Hydrological records were collected to examine the temporal and spatial distribution of runoff in this drainage basin. An apparent difference in runoff variations between the upper and mid-lower Yangtze reaches was detected in response to ENSO. The upper basin usually experiences floods or droughts during the summer of ENSO developing years, while the mid-lower runoff variations tend to coincide with ENSO decaying phases. Composite analysis is employed to investigate the underlying mechanism for the teleconnection between the specific phases of the ENSO cycle and Yangtze runoff variation. Results show that the Western Pacific Subtropical High (WPSH) exhibits large variability on its western side in summer with different ENSO phases, thus resulting in a contrasting influence between the upper and mid-lower Yangtze floods and droughts. During the central Pacific-La Niña developing summers, the WPSH is significantly enhanced with its westward extension over the Yangtze upper basin. Anomalous water vapor converges in its northwest edge thus favoring upper-basin flooding. Meanwhile, the mid-lower reaches are controlled by the WPSH, and the local rainfall is not obvious. In addition, when the El Niño decaying phases occur, the WPSH denotes a westward extending trend and the position of its ridge line shifts to the mid-lower Yangtze reaches. The southwest moisture cannot extend to the upper basin but converges in the mid-lower basin. Accompanied by the anomalous 100 hPa South Asia High and lower-tropospheric Philippines anticyclone movements, this upper–middle–lower configuration acts as a key bridge linking ENSO and Yangtze floods and droughts.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Ministry of Science and Technology of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference38 articles.

1. The great floods in the Changjiang River valley in 1998;Tao;Clim. Environ. Res.,1998

2. Comparison and consideration of the Yangtze River flomp in 1998 and 1954;Yang;Meteorol. Sci. Technol.,1999

3. Preliminary analysis of characteristics of the exception allow discharge and its cause over the Yangtze River, 2006;Xu;Resour. Environ. Yangtze Basin,2008

4. Revelation and countermeasures of catastrophic drought disasters in recent years in Southwest China;Ma;Yangtze River,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3