A Theoretical Evaluation of the Efficiencies of Metal-Free 1,3,4-Oxadiazole Dye-Sensitized Solar Cells: Insights from Electron–Hole Separation Distance Analysis

Author:

Coetzee Louis-Charl CloeteORCID,Adeyinka Adedapo SundayORCID,Magwa Nomampondo

Abstract

Herein, some novel metal-free 1,3,4-oxadiazole compounds O1–O7 were evaluated for their photovoltaic properties using density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations to determine if they can serve as metal-free organic dyes in the use of dye-sensitized solar cells (DSSCs). To understand the trends in the relative efficiencies of the investigated compounds as dyes in DSSCs, their electron contributions, hole contributions, and electron–hole overlaps for each respective atom and fragment within the molecule were analyzed with a particular focus on the electron densities on the anchoring segments. As transition density matrices (TDM) provide details about the departure of each electron from its corresponding hole during excitations, which results in charge transfer (CT), the charge separation distance (Δr) between the electron and its corresponding hole was studied, in addition to the degree of electron–hole overlap (Λ). The latter, single-point excitation energy of each electron, the percentage electron contribution to the anchoring segments of each compound, the incident-photon-conversion-efficiency (IPCE), charge recombination, light harvesting efficiency (LHE), electron injection (Φinj), and charge collection efficiency (ncollect) were then compared to Δr to determine whether the expected relationships hold. Moreover, parameters such as diffusion constant (Dπ) and electron lifetime (t), amongst others, were also used to describe electron excitation processes. Since IPCE is the key parameter in determining the efficiency, O3 was found to be the best dye due to its highest value.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3