Abstract
In this paper, we develop a novel classification algorithm that is based on the integration between competitive learning and the computational power of quantum computing. The proposed algorithm classifies an input into one of two binary classes even if the input pattern is incomplete. We use the entanglement measure after applying unitary operators to conduct the competition between neurons in order to find the winning class based on wining-take-all. The novelty of the proposed algorithm is shown in its application to the quantum computer. Our idea is validated via classifying the state of Reactor Coolant Pump of a Risky Nuclear Power Plant and compared with other quantum-based competitive neural networks model.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献