Degradation of Azo Dye Orange II Using BiOI/HKUST-1 Activated Persulfate under Visible Light Irradiation

Author:

Zhang Shumeng12,Wang Rui1,Cheng Xianxiong1,Lian Junfeng1,Liu Xin1,Tang Jiahua1

Affiliation:

1. Jiangxi Provincial Key Laboratory of Water Ecological Conservation at Headwater Regions, Jiangxi University of Science and Technology, 1958 Ke-Jia Road, Ganzhou 341000, China

2. Hunan Research Institute for Nonferrous Metals Co., Ltd., 99 Yada Road, Changsha 410125, China

Abstract

Type I semiconductor heterojunction BiOI/HKUST-1 composites were prepared through a solvothermal method, with optimisation of the molar ratio and solvothermal reaction temperature. Comprehensive characterisation was conducted to assess the physical and chemical properties of the prepared materials. These composites were then evaluated for their ability to activate persulfate (PMS) and degrade high concentrations of azo dye orange II (AO7) under visible light conditions. The influence of various parameters, including catalyst dosage, PMS dosage, and initial AO7 concentration, were investigated. The AO7 degradation followed a pseudo-second order kinetic, and under visible light irradiation for 60 min, a degradation efficiency of 94.9% was achieved using a BiOI/HKUST-1 dosage of 0.2 g/L, a PMS concentration of 0.5 mmol/L, and an AO7 concentration of 200 mg/L. The degradation process involved a synergistic action of various active species, with O2−, 1O2, and h+ playing a pivotal role. Both BiOI and HKUST-1 could be excited by visible light, leading to the generation of photogenerated electron-hole pairs (e−-h+); BiOI can efficiently scavenge the generated e−, enhancing the separation rate of e−-h+ and subsequently improving the degradation efficiency of AO7. These findings highlight the excellent photocatalytic properties of BiOI/HKUST-1, making it a promising candidate for catalysing PMS to enhance the degradation of azo dyes in environmental waters.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3