Corner Separation Control Using a New Combined Slotted Configuration in a High-Turning Compressor Cascade under Different Solidities

Author:

Wang Hejian,Qing Yanshan,Liu Bo,Mao Xiaochen

Abstract

In order to comprehensively control the corner separation and the blade trailing edge (TE) separation in a high-turning compressor stator cascade, this research proposes a new combined slotted configuration consisting of one full-span slot and two blade-end slots. Taking into account the effect of the blade solidity, the performance of the original cascade and the combined slotted cascade was calculated and evaluated in a wide incidence angle range at two blade solidities. The results indicated that the blade loading and the corner separation range of the original cascade becomes larger as the blade solidity decreases from 1.66 to 1.36, which leads to higher total pressure loss and lower pressure diffusing capacity under positive incidence angles. The low-momentum fluid in the boundary layer can be significantly re-energized by the high-momentum blade-end and full-span slots jets, hence the combined slotted configuration can eliminate the blade TE separation and reduce the corner separation remarkably in the full incidence angle range at the two blade solidities. By adopting the combined slotted configuration, the total pressure loss, turning angle and static pressure coefficient of the original cascade can be increased by −23.2%, 2.7° and 4.7% on average, respectively, when the blade solidity is 1.66, while they can be increased by −27.7%, 3.3° and 7.6% on average, respectively, when the blade solidity is 1.36. The combined slotted configuration has a significant adaptability to the low blade solidity (or high loading) condition and it shows a certain potential in increasing the aeroengine thrust-to-weight ratio by decreasing the compressor single-stage blade number.

Funder

National Natural Science Foundation of China

National Major Science and Technology Projects of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3