Device Optimization of a Lead-Free Perovskite/Silicon Tandem Solar Cell with 24.4% Power Conversion Efficiency

Author:

Amri Khaoula,Belghouthi Rabeb,Aillerie Michel,Gharbi Rached

Abstract

In this work, simulations were performed to optimize the parameters of a lead-free perovskite/silicon tandem solar cell for the improved efficiency and stability of commercial devices. The top sub-cell is based on a lead-free perovskite with a large bandgap of 1.8 eV, an electron transport layer of SnO2/PCBM, which is known for its anti-hysteresis effect, and a hole transport layer of NiO to improve stability, whereas the bottom sub-cell is based on n-type silicon to increase the efficiency of the whole cell. First, the two sub-cells were simulated under standalone conditions for calibration purposes. Then, the current matching condition was obtained by optimizing the thicknesses of the absorber layers of both sub-cells and the doping concentration of the back surface field (BSF) layer of the silicon sub-cell. As a result of this optimization phase, thicknesses of 380 nm and 20 µm for the top and bottom sub-cells, respectively, and a doping concentration of 1022 cm–3 were used in the configuration of the tandem cell, yielding a large open-circuit voltage of 1.76 V and a power conversion efficiency of 24.4% for the whole cell. Finally, the effect of the working temperature was evaluated, and the results reveal that the high performance of lead-free perovskite sub-cells is less affected by an increase in temperature compared to lead-based solar cells, such as those based on CH3NH3PbI3 perovskite.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference54 articles.

1. Quo Vadis Solar Energy Research;Reyes-Belmonte;Appl Sci. Multidiscip. Digit. Publ. Inst.,2021

2. Photon extraction: The key physics for approaching solar cell efficiency limits. Act Photonic Mater V [Internet]. International Society for Optics and Photonicshttps://www.spiedigitallibrary.org/conference-proceedings-of-spie/8808/880807/Photon-extraction--the-key-physics-for-approaching-solar-cell/10.1117/12.2024592.short

3. A road towards 25% efficiency and beyond: perovskite tandem solar cells

4. A review of the theory and technology for ohmic contacts to group III–V compound semiconductors

5. Metal halide perovskite tandem and multiple-junction photovoltaics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3