Hypericum perforatum L. and the Underlying Molecular Mechanisms for Its Choleretic, Cholagogue, and Regenerative Properties

Author:

Mohagheghzadeh Ala1,Badr Parmis2,Mohagheghzadeh Abdolali23,Hemmati Shiva145ORCID

Affiliation:

1. Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran

2. Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran

3. Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran

4. Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran

5. Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Malaysia

Abstract

Any defects in bile formation, secretion, or flow may give rise to cholestasis, liver fibrosis, cirrhosis, and hepatocellular carcinoma. As the pathogenesis of hepatic disorders is multifactorial, targeting parallel pathways potentially increases the outcome of therapy. Hypericum perforatum has been famed for its anti-depressive effects. However, according to traditional Persian medicine, it helps with jaundice and acts as a choleretic medication. Here, we will discuss the underlying molecular mechanisms of Hypericum for its use in hepatobiliary disorders. Differentially expressed genes retrieved from microarray data analysis upon treatment with safe doses of Hypericum extract and intersection with the genes involved in cholestasis are identified. Target genes are located mainly at the endomembrane system with integrin-binding ability. Activation of α5β1 integrins, as osmo-sensors in the liver, activates a non-receptor tyrosine kinase, c-SRC, which leads to the insertion of bile acid transporters into the canalicular membrane to trigger choleresis. Hypericum upregulates CDK6 that controls cell proliferation, compensating for the bile acid damage to hepatocytes. It induces ICAM1 to stimulate liver regeneration and regulates nischarin, a hepatoprotective receptor. The extract targets the expression of conserved oligomeric Golgi (COG) and facilitates the movement of bile acids toward the canalicular membrane via Golgi-derived vesicles. In addition, Hypericum induces SCP2, an intracellular cholesterol transporter, to maintain cholesterol homeostasis. We have also provided a comprehensive view of the target genes affected by Hypericum’s main metabolites, such as hypericin, hyperforin, quercitrin, isoquercitrin, quercetin, kaempferol, rutin, and p-coumaric acid to enlighten a new scope in the management of chronic liver disorders. Altogether, standard trials using Hypericum as a neo-adjuvant or second-line therapy in ursodeoxycholic-acid-non-responder patients define the future trajectories of cholestasis treatment with this product.

Funder

Shiraz University of Medical Sciences

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3