Spatially Explicit Modeling of Coupled Water and Carbon Processes Using a Distributed Ecohydrological Model in the Upper Heihe Watershed, China

Author:

Jin Huiyu,Chen Baozhang,Sun ShaoboORCID,Zhang Huifang,Measho Simon,Lin Xiaofeng,Guo Lifeng

Abstract

A fully coupled simulation of ecophysiological, hydrological and biochemical processes is significant for better understanding the individual and interactional impact of sophisticated land surface processes under future disturbances from nature and human beings. In this study, we spatially explicitly modelled evapotranspiration (ET) and photosynthesis (GPP) using a distributed hydrological model, Dynamic Land Model DLM-Ecohydro, over the Upper Heihe watershed for the years of 2013 and 2014. After considering the lateral water movements, the model fairly captured the variations in ET (R2 = 0.82, RMSE = 1.66 mm/day for 2013; R2 = 0.83, RMSE = 1.53 mm/day for 2014) and GPP (R2 = 0.71, RMSE = 5.25 gC/m2/day for 2013; R2 = 0.81, RMSE = 3.38 gC/m2/day for 2014) compared with the measurements from the Arou monitoring station. Vegetation transpiration accounted for total ET of around 65% and 64% in 2013 and 2014, respectively. A large spatial variability was found in these two indicators (14.30–885.36 mm/year for annual ET and 0–2174 gC/m2/day for annual GPP) over the watershed. Soil texture and vegetation functional types were the major factors affecting ET and GPP spatial variability, respectively. The study manifested a coupled water–carbon mechanism through the strong linear relationship between the variations in ET and GPP and the control of hydrological processes on the carbon cycle at the watershed scale. Although the model had a reasonable performance during most parts of the growing seasons, the lack of a soil freezing–thawing scenario caused inevitable discrepancies for the simulation of soil water and heat transfer mechanisms, hence inaccurately estimating the biophysiological processes in the transition period of winter to spring, which should be further improved especially for alpine regions.

Funder

National Natural Science Foundation of China

an international partnership program of Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3