Computational and Experimental Characterization of Aligned Collagen across Varied Crosslinking Degrees

Author:

Lin Shengmao1,Patrawalla Nashaita Y.2,Zhai Yingnan2ORCID,Dong Pengfei2,Kishore Vipuil23ORCID,Gu Linxia2ORCID

Affiliation:

1. School of Civil Engineering and Architecture, Xiamen University of Technology, Xiamen 361024, China

2. Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL 32901, USA

3. Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA

Abstract

Collagen-based scaffolds have been widely used in tissue engineering. The alignment of collagen fibers and the degree of crosslinking in engineering tissue scaffolds significantly affect cell activity and scaffold stability. Changes in microarchitecture and crosslinking degree also impact the mechanical properties of collagen scaffolds. A clear understanding of the effects of collagen alignment and crosslinking degrees can help properly control these critical parameters for fabricating collagen scaffolds with desired mechanical properties. In this study, combined uniaxial mechanical testing and finite element method (FEM) were used to quantify the effects of fiber alignment and crosslinking degree on the mechanical properties of collagen threads. We have fabricated electrochemically aligned collagen (ELAC) and compared it with randomly distributed collagen at varying crosslinking degrees, which depend on genipin concentrations of 0.1% or 2% for crosslinking durations of 1, 4, and 24 h. Our results indicate that aligned collagen fibers and higher crosslinking degree contribute to a larger Young’s modulus. Specifically, aligned fiber structure, compared to random collagen, significantly increases Young’s modulus by 112.7% at a 25% crosslinking degree (0.1% (4 h), i.e., 0.1% genipin concentration with a crosslinking duration of 4 h). Moreover, the ELAC Young’s modulus increased by 90.3% as the crosslinking degree doubled by changing the genipin concentration from 0.1% to 2% with the same 4 h crosslinking duration. Furthermore, verified computational models can predict mechanical properties based on specific crosslinking degrees and fiber alignments, which facilitate the controlled fabrication of collagen threads. This combined experimental and computational approach provides a systematic understanding of the interplay among fiber alignment, crosslinking parameters, and mechanical performance of collagen scaffolds. This work will enable the precise fabrication of collagen threads for desired tissue engineering performance, potentially advancing tissue engineering applications.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3