Purification of Spherical Graphite as Anode for Li-Ion Battery: A Comparative Study on the Purifying Approaches

Author:

Vu Tri Thien1ORCID,La Duong Duc1ORCID,Le Long Vu12,Pham Trung Kien1,Nguyen Minh Anh2,Nguyen Tran Hung1,Dang Trung Dung2ORCID,Um Myoung-Jin3ORCID,Chung Woojin3,Nguyen Dinh Duc34ORCID

Affiliation:

1. Institute of Chemistry and Materials, Hanoi 10000, Vietnam

2. School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Hanoi 10000, Vietnam

3. Department of Environmental Energy Engineering, Kyonggi University, Goyang 10285, Republic of Korea

4. Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam

Abstract

Graphite is a versatile material used in various fields, particularly in the power source manufacturing industry. Nowadays, graphite holds a unique position in materials for anode electrodes in lithium-ion batteries. With a carbon content of over 99% being a requirement for graphite to serve as an electrode material, the graphite refinement process plays a pivotal role in the research and development of anode materials for lithium-ion batteries. This study used three different processes to purify spherical graphite through wet chemical methods. The spherical graphite after the purification processes was analysed for carbon content by using energy-dispersive X-ray (EDX) spectroscopy and was evaluated for structural and morphological characteristics through X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller (BET) analyses. The analyses results indicate that the three-step process via H2SO4–NaOH–HCl cleaning can elevate the carbon content from 90% to above 99.9% while still maintaining the graphite structure and spherical morphology, thus enhancing the surface area of the material for anode application. Furthermore, the spherical graphite was studied for electrochemical properties when used as an anode for Li-ion batteries using cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) measurements. The results demonstrated that the purification process significantly improves the material’s capacity with a specific capacity of 350 mAh/g compared to the 280 mAh/g capacity of the anode made of spherical graphite without purification.

Funder

Ministry of Industry and Trade

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3