Towards a Wearable Feminine Hygiene Platform for Detection of Invasive Fungal Pathogens via Gold Nanoparticle Aggregation

Author:

Clack Kimberley12,Sallam Mohamed123ORCID,Matheson Carney2,Muyldermans Serge4ORCID,Nguyen Nam-Trung1ORCID

Affiliation:

1. Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia

2. School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia

3. Griffith Institute for Drug Discovery (GRIDD), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia

4. Laboratory of Cellular and Molecular Immunology (CMIM), Vrije Universiteit Brussel, 1050 Brussels, Belgium

Abstract

Candida albicans is an opportunistic fungus that becomes pathogenic and problematic under certain biological conditions. C. albicans may cause painful and uncomfortable symptoms, as well as deaths in immunocompromised patients. Therefore, early detection of C. albicans is essential. However, conventional detection methods are costly, slow, and inaccessible to women in remote or developing areas. To address these concerns, we have developed a wearable and discrete naked-eye detectable colorimetric platform for C. albicans detection. With some modification, this platform is designed to be directly adhered to existing feminine hygiene pads. Our platform is rapid, inexpensive, user-friendly, and disposable and only requires three steps: (i) the addition of vaginal fluid onto sample pads; (ii) the addition of gold nanoparticle gel and running buffer, and (iii) naked eye detection. Our platform is underpinned by selective thiolated aptamer-based recognition of 1,3-β-D glucan molecules—a hallmark of C. albicans cell walls. In the absence of C. albicans, wearable sample pads turn bright pink. In the presence of C. albicans, the wearable pads turn dark blue due to significant nanoparticle target-induced aggregation. We demonstrate naked-eye colorimetric detection of 4.4 × 106 C. albicans cells per ml and nanoparticle stability over a pH range of 3.0–8.0. We believe that this proof-of-concept platform has the potential to have a significant impact on women’s health globally.

Funder

Griffith University Higher Degree Research Scholarship

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3