Design and Research of a Strain Elastic Element with a Double-Layer Cross Floating Beam for Strain Gauge Wireless Rotating Dynamometers

Author:

Wang Qinan1,Wu Wenge1ORCID,Zhao Yongjuan1,Cheng Yunping1,Liu Lijuan1ORCID,Yan Kaiqiang1

Affiliation:

1. School of Mechanical Engineering, North University of China, Taiyuan 030051, China

Abstract

Cutting force is one of the most basic signals that can reflect the information of the cutting process, so it is very necessary to study the strain elastic element of strain gauge wireless rotating dynamometers. This paper proposes a strain elastic element with a double-layer cross floating beam that can be applied to the strain gauge wireless rotating dynamometer, which can simultaneously obtain the four-component cutting force/torque information of FX, FY, FZ, and MZ. Based on the proposed strain elastic element, a compact strain gauge wireless rotating dynamometer is designed, which is composed of a tool holder, upper connection flange, strain elastic element, lower connection flange, tool base, and data acquisition and wireless transmission system. The static model of the double-layer cross floating beam on the strain elastic element is established by the segmented rigid body method, and the relationships between the material, force, structural parameters, and the strain and deformation of the floating beam are obtained. The static model is consistent with the finite element solution, which proves the rationality of the static model. Based on the established static model, the sequential quadratic programming algorithm is used to optimize the structural parameters of the double-layer cross floating beam to maximize the sensitivity of the floating beam. The overall structure of the strain elastic element is analyzed by finite element software, and the strain of the structure under simulation conditions is obtained, which provides a reference for subsequent calibration tests and circuit design. The calibration matrix and dynamic performance of the strain elastic element are obtained by the static calibration test, dynamic calibration test, and cutting test. The results show that the proposed strain elastic element has high sensitivity and low cross-sensitivity error, and can be applied to the strain gauge wireless rotating dynamometer to measure medium- and low-speed cutting forces.

Funder

National Natural Science Foundation of China

Shanxi Province Central Guidance Local Science and Technology Development Fund Project

Fundamental Research Program of Shanxi Province

Shanxi Province Graduate Education Innovation Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3