Importance-Based Key Basic Event Identification and Evolution Mechanism Investigation of Hydraulic Support Failure to Protect Employee Health

Author:

Xu QingweiORCID,Xu Kaili

Abstract

Background: Although hydraulic support can help enterprises in their production activities, it can also cause fatal accidents. Methods: This study established a composite risk-assessment method for hydraulic support failure in the mining industry. The key basic event of hydraulic support failure was identified based on fault tree analysis and gray relational analysis, and the evolution mechanism of hydraulic support failure was investigated based on chaos theory, a synthetic theory model, and cause-and-effect-layer-of-protection analysis (LOPA). Results: After the basic events of hydraulic support failure are identified based on fault tree analysis, structure importance (SI), probability importance (PI), critical importance (CI), and Fussell–Vesely importance (FVI) can be calculated. In this study, we proposed the Fussell–Vesely–Xu importance (FVXI) to reflect the comprehensive impact of basic event occurrence and nonoccurrence on the occurrence probability of the top event. Gray relational analysis was introduced to determine the integrated importance (II) of basic events and identify the key basic events. According to chaos theory, hydraulic support failure is the result of cross-coupling and infinite amplification of faults in the employee, object, environment, and management subsystems, and the evolutionary process has an obvious butterfly effect and inherent randomness. With the help of the synthetic theory model, we investigated the social and organizational factors that may lead to hydraulic support failure. The key basic event, jack leakage, was analyzed in depth based on cause-and-effect-LOPA, and corresponding independent protection layers (IPLs) were identified to prevent jack leakage. Implications: The implications of these findings with respect to hydraulic support failure can be regarded as the foundation for accident prevention in practice.

Funder

Research Project of Henan Federation of Social Science

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3