Abstract
Hyperspectral image (HSI) acquisitions are degraded by various noises, among which additive Gaussian noise may be the worst-case, as suggested by information theory. In this paper, we present a novel tensor-based HSI denoising approach by fully identifying the intrinsic structures of the clean HSI and the noise. Specifically, the HSI is first divided into local overlapping full-band patches (FBPs), then the nonlocal similar patches in each group are unfolded and stacked into a new third order tensor. As this tensor shows a stronger low-rank property than the original degraded HSI, the tensor weighted nuclear norm minimization (TWNNM) on the constructed tensor can effectively separate the low-rank clean HSI patches. In addition, a regularization strategy with spatial–spectral total variation (SSTV) is utilized to ensure the global spatial–spectral smoothness in both spatial and spectral domains. Our method is designed to model the spatial–spectral non-local self-similarity and global spatial–spectral smoothness simultaneously. Experiments conducted on simulated and real datasets show the superiority of the proposed method.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献