Achieving Higher Resolution Lake Area from Remote Sensing Images Through an Unsupervised Deep Learning Super-Resolution Method

Author:

Qin Mengjiao,Hu Linshu,Du Zhenhong,Gao Yi,Qin Lianjie,Zhang FengORCID,Liu Renyi

Abstract

Lakes have been identified as an important indicator of climate change and a finer lake area can better reflect the changes. In this paper, we propose an effective unsupervised deep gradient network (UDGN) to generate a higher resolution lake area from remote sensing images. By exploiting the power of deep learning, UDGN models the internal recurrence of information inside the single image and its corresponding gradient map to generate images with higher spatial resolution. The gradient map is derived from the input image to provide important geographical information. Since the training samples are only extracted from the input image, UDGN can adapt to different settings per image. Based on the superior adaptability of the UDGN model, two strategies are proposed for super-resolution (SR) mapping of lakes from multispectral remote sensing images. Finally, Landsat 8 and MODIS (moderate-resolution imaging spectroradiometer) images from two study areas on the Tibetan Plateau in China were used to evaluate the performance of UDGN. Compared with four unsupervised SR methods, UDGN obtained the best SR results as well as lake extraction results in terms of both quantitative and visual aspects. The experiments prove that our approach provides a promising way to break through the limitations of median-low resolution remote sensing images in lake change monitoring, and ultimately support finer lake applications.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3