Population Spatialization in Beijing City Based on Machine Learning and Multisource Remote Sensing Data

Author:

He Miao,Xu YongmingORCID,Li Ning

Abstract

Remote sensing data have been widely used in research on population spatialization. Previous studies have generally divided study areas into several sub-areas with similar features by artificial or clustering algorithms and then developed models for these sub-areas separately using statistical methods. These approaches have drawbacks due to their subjectivity and uncertainty. In this paper, we present a study of population spatialization in Beijing City, China based on multisource remote sensing data and town-level population census data. Six predictive algorithms were compared for estimating population using the spatial variables derived from The National Polar-Orbiting Partnership/ Visible Infrared Imaging Radiometer Suite (NPP/VIIRS) night-time light and other remote sensing data. Random forest achieved the highest accuracy and therefore was employed for population spatialization. Feature selection was performed to determine the optimal variable combinations for population modeling by random forest. Cross-validation results indicated that the developed model achieved a mean absolute error (MAE) of 2129.52 people/km2 and a R2 of 0.63. The gridded population density in Beijing at a spatial resolution of 500 m produced by the random forest model was also adjusted to be consistent with the census population at the town scale. By comparison with Google Earth high-resolution images, the remotely-sensed population was qualitatively validated at the intra-town scale. Validation results indicated that remotely sensed results can effectively depict the spatial distribution of population within town-level districts. This study provides a valuable reference for urban planning, public health and disaster prevention in Beijing, and a reference for population mapping in other cities.

Funder

Qing Lan Project of Jiangsu Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference55 articles.

1. World Urbanization Prospects: The 2018 Revision,2019

2. Urbanization, economic growth and environmental pollution: Evidence from China

3. Handbook of Economic Growth,2005

4. Urban environmental challenges in developing countries—A stakeholder perspective

5. Rapid Urbanisation: Opportunities and Challenges to Improve the Well-Being of Societies;Palanivel,2017

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3