Prediction of Yield Productivity Zones from Landsat 8 and Sentinel-2A/B and Their Evaluation Using Farm Machinery Measurements

Author:

Řezník Tomáš,Pavelka Tomáš,Herman LukášORCID,Lukas VojtěchORCID,Širůček Petr,Leitgeb Šimon,Leitner FilipORCID

Abstract

Yield is one of the primary concerns for any farmer since it is a key to economic prosperity. Yield productivity zones—that is to say, areas with the same yield level within fields over the long-term—are a form of derived (predicted) data from periodic remote sensing, in this study according to the Enhanced Vegetation Index (EVI). The delineation of yield productivity zones can (a) increase economic prosperity and (b) reduce the environmental burden by employing site-specific crop management practices which implement advanced geospatial technologies that respect soil heterogeneity. This paper presents yield productivity zone identification and computing based on Sentinel-2A/B and Landsat 8 multispectral satellite data and also quantifies the success rate of yield prediction in comparison to the measured yield data. Yield data on spring barley, winter wheat, corn, and oilseed rape were measured with a spatial resolution of up to several meters directly by a CASE IH harvester in the field. The yield data were available from three plots in three years on the Rostěnice Farm in the Czech Republic, with an overall acreage of 176 hectares. The presented yield productivity zones concept was found to be credible for the prediction of yield, including its geospatial variations.

Funder

Horizon 2020 Framework Programme

Masaryk University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference61 articles.

1. Precision farming — the environmental challenge

2. http://www.foodie-project.eu/public/20150619173124.pdf

3. https://www.databio.eu/wp-content/uploads/2017/05/DataBio_D1.1-Agriculture-Pilot-Definition_v1.1_2018-04-26_LESPRO.pdf

4. An INSPIRE-Based Vocabulary for the Publication of Agricultural Linked Data

5. Best Practice Network GS SOIL Promoting Access to European, Interoperable and INSPIRE Compliant Soil Information

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3