Automatic Localization of Soybean Seedlings Based on Crop Signaling and Multi-View Imaging

Author:

Jiang Bo1ORCID,Zhang He-Yi1ORCID,Su Wen-Hao1ORCID

Affiliation:

1. College of Engineering, China Agricultural University, Haidian, Beijing 100083, China

Abstract

Soybean is grown worldwide for its high protein and oil content. Weeds compete fiercely for resources, which affects soybean yields. Because of the progressive enhancement of weed resistance to herbicides and the quickly increasing cost of manual weeding, mechanical weed control is becoming the preferred method of weed control. Mechanical weed control finds it difficult to remove intra-row weeds due to the lack of rapid and precise weed/soybean detection and location technology. Rhodamine B (Rh-B) is a systemic crop compound that can be absorbed by soybeans which fluoresces under a specific excitation light. The purpose of this study is to combine systemic crop compounds and computer vision technology for the identification and localization of soybeans in the field. The fluorescence distribution properties of systemic crop compounds in soybeans and their effects on plant growth were explored. The fluorescence was mainly concentrated in soybean cotyledons treated with Rh-B. After a comparison of soybean seedlings treated with nine groups of rhodamine B solutions at different concentrations ranging from 0 to 1440 ppm, the soybeans treated with 180 ppm Rh-B for 24 h received the recommended dosage, resulting in significant fluorescence that did not affect crop growth. Increasing the Rh-B solutions reduced crop biomass, while prolonged treatment times reduced seed germination. The fluorescence produced lasted for 20 days, ensuring a stable signal in the early stages of growth. Additionally, a precise inter-row soybean plant location system based on a fluorescence imaging system with a 96.7% identification accuracy, determined on 300 datasets, was proposed. This article further confirms the potential of crop signaling technology to assist machines in achieving crop identification and localization in the field.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3