The Validity and Reliability of a Real-Time Biofeedback System for Lumbopelvic Control Training in Baseball Players

Author:

Wang Shiu-Min1,Jiang Po-Hsien2,Chan Kuei-Yuan2,Hsu Wei-Li13ORCID

Affiliation:

1. School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, No. 17, Xuzhou Rd., Zhongzheng Dist., Taipei City 100, Taiwan

2. Department of Mechanical Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan

3. Physical Therapy Centre, National Taiwan University Hospital, No. 1, Changde St., Zhongzheng Dist., Taipei City 100, Taiwan

Abstract

Background: This study validates real-time biofeedback for lumbopelvic control training in baseball. The lumbopelvic region is crucial for generating kinetic energy in pitching. Real-time biofeedback enhances training effectiveness and reduces injury risk. The validity and reliability of this system were examined. Purpose: This study was to investigate the validity and reliability of the real-time biofeedback system for lumbopelvic control training. Methods: Twelve baseball players participated in this study, with data collected in two sessions separated by a week. All participants needed to do the lateral slide exercise and single-leg squat exercise in each session. Pelvic angles detected by the real-time biofeedback system were compared to the three-dimensional motion capture system (VICON) during training sessions. Additionally, pelvic angles measured by the biofeedback system were compared between the two training sessions. Results: The real-time biofeedback system exhibited moderate to strong correlations with VICON in both exercises: lateral slide exercise (r = 0.66–0.88, p < 0.05) and single-leg squat exercise (r = 0.70–0.85, p < 0.05). Good to excellent reliability was observed between the first and second sessions for both exercises: lateral slide exercise (ICC = 0.76–0.97) and single-leg squat exercise (ICC = 0.79–0.90). Conclusions: The real-time biofeedback system for lumbopelvic control training, accurately providing the correct pelvic angle during training, could enhance training effectiveness.

Funder

National Science and Technology Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3