A CNN Model for Human Parsing Based on Capacity Optimization

Author:

Jiang Yalong,Chi Zheru

Abstract

Although a state-of-the-art performance has been achieved in pixel-specific tasks, such as saliency prediction and depth estimation, convolutional neural networks (CNNs) still perform unsatisfactorily in human parsing where semantic information of detailed regions needs to be perceived under the influences of variations in viewpoints, poses, and occlusions. In this paper, we propose to improve the robustness of human parsing modules by introducing a depth-estimation module. A novel scheme is proposed for the integration of a depth-estimation module and a human-parsing module. The robustness of the overall model is improved with the automatically obtained depth labels. As another major concern, the computational efficiency is also discussed. Our proposed human parsing module with 24 layers can achieve a similar performance as the baseline CNN model with over 100 layers. The number of parameters in the overall model is less than that in the baseline model. Furthermore, we propose to reduce the computational burden by replacing a conventional CNN layer with a stack of simplified sub-layers to further reduce the overall number of trainable parameters. Experimental results show that the integration of two modules contributes to the improvement of human parsing without additional human labeling. The proposed model outperforms the benchmark solutions and the capacity of our model is better matched to the complexity of the task.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. JPPF: Multi-task Fusion for Consistent Panoptic-Part Segmentation;SN Computer Science;2024-01-10

2. Part-aware Panoptic Segmentation;2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2021-06

3. Instance Level Human Parts Detection Using Artificial Neural Networks and Deep Learning;Journal of Physics: Conference Series;2021-05-01

4. Special Features on Intelligent Imaging and Analysis;Applied Sciences;2019-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3