Author:
Ye Shulong,Mo Wei,Lv Yonghu,Wang Zhanhua,Kwok Chi Tat,Yu Peng
Abstract
In this study, the metal injection molding (MIM) process is applied to produce Ti-6Al-4V parts using blended and prealloyed powders, respectively. The feedstocks are prepared from a polyformaldehyde-based binder system with a powder loading of 60 vol%, exhibiting a low viscosity. The decomposition behavior of the binders is investigated and the thermal debinding procedure is designed accordingly. The debound parts are subsequently sintered at 1200 and 1300 °C. The results show the mechanical properties of the sintered samples prepared from blended powder are comparable to those prepared from prealloyed powder, with yield strength of 810 MPa, ultimate tensile strength (UTS) of 927 MPa, and elongation of 4.6%. The density of the as-sintered samples can reach 4.26 g/cm3 while oxygen content is ~0.3%. Based on the results, watch cases with complex shapes are successfully produced from Ti-6Al-4V blended powder. The case gives a good example of applying metal injection molding to mass production of precise Ti-6Al-4V parts with complex shapes in a cost-effective way.
Funder
Shenzhen Science and Technology Innovation Commission
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献