Applications of Continuous Wave Free Precession Sequences in Low-Field, Time-Domain NMR

Author:

Bueno Moraes Tiago,Monaretto Tatiana,Colnago LuizORCID

Abstract

This review discusses the theory and applications of the Continuous Wave Free Precession (CWFP) sequence in low-field, time-domain nuclear magnetic resonance (TD-NMR). CWFP is a special case of the Steady State Free Precession (SSFP) regime that is obtained when a train of radiofrequency pulses, separated by a time interval Tp shorter than the effective transverse relaxation time (T2*), is applied to a sample. Unlike regular pulsed experiments, in the CWFP regime, the amplitude is not dependent on T1. Therefore, Tp should be as short as possible (limited by hardware). For Tp < 0.5 ms, thousands of scans can be performed per second, and the signal to noise ratio can be enhanced by more than one order of magnitude. The amplitude of the CWFP signal is dependent on T1/T2; therefore, it can be used in quantitative analyses for samples with a similar relaxation ratio. The time constant to reach the CWFP regime (T*) is also dependent on relaxation times and flip angle (θ). Therefore, T* has been used as a single shot experiment to measure T1 using a low flip angle (5°) or T2, using θ = 180°. For measuring T1 and T2 simultaneously in a single experiment, it is necessary to use θ = 90°, the values of T* and M0, and the magnitude of CWFP signal |Mss|. Therefore, CWFP is an important sequence for TD-NMR, being an alternative to the Carr-Purcell-Meiboom-Gill sequence, which depends only on T2. The use of CWFP for the improvement of the signal to noise ratio in quantitative and qualitative analyses and in relaxation measurements are presented and discussed.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3