Abstract
We prove that a linear operator of a complex Banach space has a shadowable point if and only if it has the shadowing property. In addition, every equicontinuous linear operator does not have the shadowing property and its spectrum is contained in the unit circle. Finally, we prove that if a linear operator is expansive and has the shadowing property, then the origin is the only nonwandering point.
Funder
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Hyperbolicity, Shadowing, and Bounded Orbits;Qualitative Theory of Dynamical Systems;2022-04-26