Abstract
Because the laser powder bed fusion process is generally completed in a confined space and in a very short time, it is difficult to study material oxidation during this process using traditional methods. To address this knowledge gap, in this work, we used molecular dynamics (MDs) based on a reaction force field (ReaxFF) to clarify the atomic-level interaction mechanism between metal atoms and oxygen molecules during laser powder bed fusion. The ReaxFF potential energy model has variable charges that can dynamically handle charge changes between atoms and the breaking and formation of chemical bonds that occur during oxidation reactions. We investigated the effects of laser power, scanning speed, region position, and oxygen concentration on powder oxidation. The results show that the laser power and scanning speed affected the oxidation degree by changing the energy input density, and the oxidation degree increased with the energy input density. Different forms of oxidation occurred near the melt channel due to the existence of a temperature gradient, and the degree of oxidation increased with the temperature. Atoms in the metal powder model underwent selective oxidation, which was related to the potential energy of their atomic position. A larger potential energy made it easier for iron atoms to overcome the energy barrier during the initial stage of oxidation, making them easier to oxidize.
Funder
the National Key Research and Development Program of China
Subject
General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献