Prediction of Undrained Shear Strength by the GMDH-Type Neural Network Using SPT-Value and Soil Physical Properties

Author:

Kim Mintae,Okuyucu Osman,Ordu Ertuğrul,Ordu Seyma,Arslan Özkan,Ko JunyoungORCID

Abstract

This study presents a novel method for predicting the undrained shear strength (cu) using artificial intelligence technology. The cu value is critical in geotechnical applications and difficult to directly determine without laboratory tests. The group method of data handling (GMDH)-type neural network (NN) was utilized for the prediction of cu. The GMDH-type NN models were designed with various combinations of input parameters. In the prediction, the effective stress (σv’), standard penetration test result (NSPT), liquid limit (LL), plastic limit (PL), and plasticity index (PI) were used as input parameters in the design of the prediction models. In addition, the GMDH-type NN models were compared with the most commonly used method (i.e., linear regression) and other regression models such as random forest (RF) and support vector regression (SVR) models as comparative methods. In order to evaluate each model, the correlation coefficient (R2), mean absolute error (MAE), and root mean square error (RMSE) were calculated for different input parameter combinations. The most effective model, the GMDH-type NN with input parameters (e.g., σv’, NSPT, LL, PL, PI), had a higher correlation coefficient (R2 = 0.83) and lower error rates (MAE = 14.64 and RMSE = 22.74) than other methods used in the prediction of cu value. Furthermore, the impact of input variables on the model output was investigated using the SHAP (SHApley Additive ExPlanations) technique based on the extreme gradient boosting (XGBoost) ensemble learning algorithm. The results demonstrated that using the GMDH-type NN is an efficient method in obtaining a new empirical mathematical model to provide a reliable prediction of the undrained shear strength of soils.

Funder

Chungnam National University

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3