Experimental and DEM-Based Numerical Studies on the Shearing Characteristics of Talus-like Rock Mass

Author:

Li XiaochangORCID,Zhang Zixin,Yi Yinlian,Wang ShuaifengORCID

Abstract

The talus-like rock mass is a special kind of geomaterial widely distributed in southwestern China, which has induced serious engineering disasters for tunneling engineering. However, the mechanical behavior of the talus-like rock mass remains unclear as the previous studies mainly focused on similar geomaterials such as the soil–rock mixtures. In this paper, we have carried out both experimental and discrete element method (DEM)-based numerical analyses to investigate the shearing characteristics of the talus-like rock mass collected from a real project site. Large-scale direct shear tests reveal that the strength parameters increase with the block content, which is different from the traditional soil–rock mixture. A dependence has been discovered in that the specimen dilation becomes more obvious under lower normal stress and larger block content. It is also observed that higher normal stress is beneficial for crushing blocks. The force chains obtained in the DEM simulations show that distinct internal structures are generated in the rock samples with different block contents. The distribution of coordination number establishes the dependence of fabric stability on block content during shearing. Bond-break evolution reveals the tendencies of crushed particles were consistent with those of experimental tests. The findings provide a more in-depth understanding about the mechanical behavior of the talus-like rock mass, which helps to uncover the cause of the collapse of the real tunnel project.

Funder

National Natural Science Foundation of China

POWERCHINA Roadbridge Group Co., Ltd.

Publisher

MDPI AG

Subject

General Materials Science

Reference46 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3