Abstract
Several recent studies have attempted to formulate printable cementitious materials to meet the printing requirements, but these materials are designed to work with specific printing equipment and printing configurations. This paper aims to systematically develop and perform characterization of a commercially available ultra-high-performance concrete-class material (UHPC) modified to be printable. Four percentages of superplasticizer were used (100%, 94%, 88%, 82%) to adjust the UHPC mixture for 3D-printing requirements. A superplasticizer amount of 88% was considered adequate to meet the requirements. Several fresh and hardened properties of UHPC were measured experimentally: shape-retention ability and green strength were investigated in fresh state, and compressive and flexural strength were evaluated in three loading directions to evaluate the anisotropic effects. Furthermore, the strength of the interlayer bond was investigated. The UHPC developed in this study met the criteria for extrudability, buildability, and shape retention to ensure printability. In comparison with mold-cast UHPC, printed UHPC exhibited superior flexural performance (15–18%), but reduced compressive strength (32–56%). Finally, the results demonstrated that a commercially available UHPC-class material can be used for 3DCP, which possesses all necessary properties, both fresh and hardened.
Subject
General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献