Abstract
We have developed a facile and sustainable method to produce a novel θ-Al2O3-supported CuCl adsorbent through impregnation methods using CuCl2 as the precursor. In an easy two-step process, θ-Al2O3 was impregnated with a known concentration of CuCl2 solutions, and the precursor was calcined to prepare CuCl oversupport. The developed novel θ-Al2O3-supported CuCl adsorbent was compared with an adsorbent prepared through the conventional method using CuCl salt. The adsorbents were characterized via X-ray diffraction (XRD), thermal gravimetric analysis (TGA) and temperature-programmed reduction (H2-TPR). Overall, the adsorbent indicates a high CO adsorption capacity, high CO/CO2 and CO/N2 selectivity, and remarkable reusability performance. This process is operated at ambient temperature, which minimizes operation costs in CO separation processes. In addition, these results indicate that the systematic evaluation of alumina-supported CuCl adsorbent can provide significant insight for designing a realistic PSA process for selective CO separation processes.
Funder
National Research Council of Science & Technology
Subject
General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献