Clarification of Temperature Field Evolution in Large-Scale Electric Upsetting Process of Ni80A Superalloy through Finite Element Method

Author:

Zhao Jiang,Quan Guo-Zheng,Zhang Yu-Qing,Zhang Jian-ShengORCID

Abstract

Electric upsetting has been widely employed to manufacture the preformed workpiece of large-scale exhaust valves. The temperature field in the electric upsetting process plays an important role in microstructure evolution and defect formation. In order to uncover the temperature evolution in a larger-scale electric upsetting process, the electric-thermal-mechanical multi-field coupling finite element model was developed to simulate the electric upsetting forming process of Ni80A superalloy. The temperature distribution characteristics and their formation mechanisms under different stages were analyzed systematically. Results indicate that at the preheating stage, the billet temperature increases from 20 °C to 516.7 °C, and the higher temperature region firstly appears at the contact surface between billet and anvil due to the combined effects of contact resistance and volume resistance. With increasing preheating time, the higher temperature region is transferred to the interior of the billet because the contact resistance is reduced with increasing temperature. As for the forming process, the billet is gradually deformed into an onion shape. The highest billet temperature increases to 1150 °C and keeps relatively constant. The high temperature region always appears at the neck of the onion due to the relatively higher current density at this place. It enlarges continuously in the primary stage and intermediate stage, and then decreases at the stable deformation stage. The low temperature regions lie in the contact surface and the outer surface of the onion because a lot of heat is lost to the anvil and surroundings through thermal conduction and radiation. Finally, the established finite element model was verified by an actual electric upsetting experiment. The average relative error between simulated temperatures and experimental ones was estimated as 7.54%. The longitudinal and radial errors between simulated onion shape and the experimental one were calculated as 1.38% and 2.70%, respectively.

Funder

National Natural Science Foundation of China

Open Fund of State Key Laboratory of Materials Processing and Die & Mould Technology

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3